logo
Nowości
Do domu > Nowości > Informacje o firmie Innowacje w paście lutowniczej UHDI 2025: Kluczowe trendy kształtujące elektronikę nowej generacji
Wydarzenia
Skontaktuj się z nami

Innowacje w paście lutowniczej UHDI 2025: Kluczowe trendy kształtujące elektronikę nowej generacji

2025-09-04

Najnowsze wiadomości o Innowacje w paście lutowniczej UHDI 2025: Kluczowe trendy kształtujące elektronikę nowej generacji

W miarę jak elektronika zmierza w stronę ultra-miniaturyzacji, pomyśl o 0.3mm pitch BGA w smartfonach 5G i procesorach AI opartych na chipletach Ultra High Density Interconnect (UHDI) pasta lutowa stała się nieznanym bohaterem umożliwiającym te postępyW 2025 r. cztery przełomowe innowacje będą na nowo definiowały to, co jest możliwe: ultrafinne preparaty proszkowe, monolityczne szablony do ablacji laserowej, tusze z rozkładu metalowo-organicznego (MOD),i dielektryki o niskiej stratze nowej generacjiTechnologie te nie są tylko stopniowymi ulepszeniami; są one kluczowe dla odblokowania 6G, zaawansowanych opakowań i urządzeń IoT, które wymagają szybszej prędkości, mniejszych odcisków i większej niezawodności..


W niniejszym przewodniku podzielone są poszczególne innowacje, ich przełomy techniczne, zastosowania w świecie rzeczywistym i przyszłe trajektorie oparte na danych od wiodących producentów takich jak CVE, DMG MORI i PolyOne.Niezależnie od tego, czy jesteś producentem elektroniki,Jeśli jesteś inżynierem projektowym lub specjalistą ds. zamówień publicznych, zrozumienie tych trendów pomoże Ci pozostać na czele rynku, na którym dokładność 0,01 mm może oznaczać różnicę między sukcesem a porażką.


Kluczowe wnioski
1.Ultrafijne proszki lutowe (typ 5 ≤15 μm) umożliwiają BGA o rozstawie 0,3 mm i komponenty 008004, zmniejszając próżnię do < 5% w modulach radarów samochodowych i 5G.
2Stensyle do ablacji laserowej zapewniają rozdzielczość krawędzi 0,5 μm, zwiększając efektywność przenoszenia pasty o 30% w porównaniu z etyką chemiczną, która jest kluczowa dla zespołów UHDI.
3Tkwy.MOD utwardzają się w temperaturze 300°C, drukując cienkie linie 20 μm dla anten 5G, przy jednoczesnym zmniejszeniu emisji LZO o 80% w porównaniu z tradycyjnymi paskami.
4Dielektryki o niskiej stratze (Df < 0,001 przy 0,3 THz) zmniejszają stratę sygnału 6G o 30%, co umożliwia komunikację w terahercach.
5Innowacje te, choć kosztowne początkowo, obniżyły koszty długoterminowe o 25% dzięki wyższym plonom i miniaturyzacji, niezbędnej do produkcji dużych ilości.


1. Ultra-Fine Powder Solder Paste: Precyzja na poziomie mikrona
Przejście na mniejsze elementy pasywne, BGA o rozmiarze 0,3 mm i ślady poniżej 20 μm wymaga pasty lutowniczej, która może drukować z dokładnością.o wielkości cząstek ≤ 15 μm, są rozwiązaniem, umożliwionym przez postępy w syntezie proszku i technologii druku.


Przełomy techniczne
a.Sferoidalizacja: atomyzacja gazu i przetwarzanie plazmy wytwarzają proszki o 98% morfologii kulistej, zapewniając spójny przepływ i możliwość drukowania.D90 (wielkość cząstek w 90. procentilu) jest teraz ściśle kontrolowana w temperaturze ≤ 18 μm, zmniejszając przepływy w zastosowaniach o cienkim tonie.
b.Optymalizacja reologii: Dodatki takie jak środki toksotropowe i modyfikatory strumienia dostosowują lepkość pasty, umożliwiając jej utrzymanie kształtu w otworach szablonów o długości 20 μm bez upadku lub zatkania.
c. Automatyczne drukowanie: systemy takie jak drukarka pasty lutowniczej SMD CVE® wykorzystują systemy widzenia sterowane przez sztuczną inteligencję w celu osiągnięcia dokładności umieszczenia ± 0,05 mm, z 99,8% wydajnością pierwszego przejścia dla komponentów o rozmiarze 0,3 mm.

Rodzaj proszku Wielkość cząstek (μm) Sferyczność (%) Wskaźnik nieważności w BGA Najlepiej dla
Typ 4 (standardowy) 20 ¢38 85 10 ‰ 15% 0Komponenty o wysokości odchylenia 0,5 mm, ogólne SMT
Typ 5 (ultrafinne) 10 ¢15 98 < 5% 0.3mm BGA, 008004 pasywy


Główne zalety
a.Miniaturyzacja: umożliwia montaż z 20 μm śladów i 0,3 mm pitch BGA ≈ krytyczne dla kurczenia modemów 5G i czujników noszalnych o 40% w porównaniu z poprzednimi generacjami.
b. Redukcja próżni: cząstki kuliste są bardziej gęste, zmniejszając próżnie w modułach radarów samochodowych do < 5% (z 15% w przypadku proszków typu 4), poprawiając przewodność cieplną i odporność na zmęczenie.
c.Efektywność procesów: Automatyczne drukarki z informacjami zwrotnymi w czasie rzeczywistym skracają czas konfiguracji o 50%, obsługując ponad 500 płyt/godzinę w produkcji dużych objętości (np. w produkcji smartfonów).


Wyzwania, które trzeba pokonać
a.Koszto: Proszki typu 5 kosztują 20-30% więcej niż proszki typu 4 ze względu na złożoną syntezę i kontrolę jakości.
ryzyko utleniania: cząstki < 10 μm mają dużą powierzchnię powierzchni, co sprawia, że są podatne na utlenianie podczas przechowywania.zwiększenie złożoności logistyki.
c.Zaciśnięcie: Cienkie proszki mogą się aglomerować, zatykając otwory szablonów.


Przyszłe trendy
a.Formuły wzmocnione nano: Dodanie nanocząstek srebra lub miedzi o długości 5 ‰ 10 nm do pasty typu 5 poprawia przewodność cieplną o 15%, co jest kluczowe dla wysokiej mocy chipów sztucznej inteligencji.Wczesne badania wykazały 20% lepsze rozpraszanie ciepła w 3D-IC.
b.Kontrolę procesów opartą na sztucznej inteligencji: modele uczenia maszynowego (szkolone na cyklach druku 1M+) przewidują zachowanie pasty w różnych temperaturach i częstotliwościach cięcia, zmniejszając konfigurację prób i błędów o 70%.
c.Zrównoważony rozwój: Pasty typu 5 bez ołowiu (stopy Sn-Ag-Cu) spełniają obecnie normy RoHS 3.0, z 95% możliwością recyklingu zgodną z przepisami UE i USA.


2Monolityczne sztabki do ablacji laserowej: Precyzja poza etykietą chemiczną
Kształtniki są nieznanymi bohaterami druku pasty lutowej, a w 2025 roku laser ablacja zastąpił etykietę chemiczną jako złoty standard dla zastosowań UHDI.Te szablony zapewniają precyzję poniżej mikronu., umożliwiające osiągnięcie właściwości, których nie mogą osiągnąć same ultrafijne proszki.


Przełomy techniczne
a.Technologia laserowa włóknowa: Wysokiej mocy (≥ 50 W) lasery światłowodowe z impulsami femtosekundowymi tworzą trapezoidalne otwory z pionowymi ścianami bocznymi i 0,05 W.5 μm rozdzielczość krawędzi ≈ znacznie wyższa od 5 ≈ 10 μm chropości sztuczek grawerowanych chemicznie.
b. Korekta wzroku w czasie rzeczywistym: systemy takie jak DMG MORI ′s LASERTEC 50 Shape Femto wykorzystują kamery 12MP do regulowania warpage'u szablonu podczas ablacji, zapewniając dokładność przysłony w zakresie ± 1 μm.
c. Elektropolerowanie: obróbka powierzchni po ablacji zmniejsza tarcie, zmniejsza przyczepność pasty o 40% i wydłuża żywotność szablonu o 30% (od 50k do 65k wydruków).

Metoda wytwarzania szablonów Rozdzielczość krawędzi (μm) Dokładność otworu Długość życia (druki) Koszty (względne)
Etycja chemiczna 5 ¢10 ± 5 μm 40k. 1x
Ablacja laserowa 0.5 ± 1 μm 65k. 3x


Główne zalety
a.Elastyczność projektowania: Ablacja laserowa obsługuje skomplikowane funkcje, takie jak otwory stopniowe (dla komponentów o mieszanym tonie) i zmienne grubości, kluczowe dla zespołów łączących 0.3 mm BGA i 0402 pasyw.
b. Konsekwentny transfer pasty: gładkie otwory (Ra < 0,1 μm) zapewniają 95% uwalnianie pasty, zmniejszając ′′tombstoning′′ w komponentach 01005 o 60% w porównaniu z grawerowanymi szablonami.
c.Szybka produkcja: zaawansowane systemy laserowe mogą wyciągać szablon o wymiarach 300 mm × 300 mm w ciągu 2 godzin5 razy szybciej niż etycja chemiczna, przyspieszając czas wprowadzania nowych produktów na rynek.


Wyzwania, które trzeba pokonać
a. Wysokie początkowe inwestycje: systemy do ablacji laserowej kosztują 500 000 USD-1 mln USD, co czyni je niepraktycznymi dla małych i średnich przedsiębiorstw (MŚP).
b. Rozszerzenie termiczne: szkice ze stali nierdzewnej odchylają się o 5 ‰ 10 μm podczas ponownego przepływu (≥ 260 ° C), niezgodując z nim osady pasty. Jest to szczególnie problematyczne w przypadku lutowników bez ołowiu o wyższych punktach topnienia.
c. Ograniczenia materiałowe: Standardowa stal nierdzewna zmaga się z ultrafinnymi otworami (< 20 μm), wymagając drogich stopów takich jak nierdzewna 316L (wyższa odporność na korozję, ale o 20% droższa).


Przyszłe trendy
a.Sztensyle kompozytowe: hybrydowe konstrukcje łączące stal nierdzewną z Invar (stop Fe-Ni) zmniejszają warpage termiczne o 50% podczas ponownego przepływu,krytyczne dla elektroniki podwozia samochodowego (środowiska o temperaturze 125°C+).
b.3D Laser Ablation: wieloosiowe lasery tworzą zakrzywione i hierarchiczne otwory dla 3D-IC i opakowań na poziomie płytki (FOWLP), umożliwiając osadzenie pasty na powierzchniach niepłaskich.
c.Smart Stencils: wbudowane czujniki monitorują zużycie i zatykanie otworu w czasie rzeczywistym, ostrzegając operatorów przed wystąpieniem wad, zmniejszając współczynnik złomu o 25% w liniach o dużej objętości.


3. Farby metalowo-organiczne (MOD): Przewodniki drukowania bez cząstek
Do zastosowań wymagających ultra-cienkiej linii (≤ 20 μm) i obróbki w niskich temperaturach atramenty z rozkładu metalowo-organicznego (MOD) są przełomowe.,przezwyciężanie ograniczeń tradycyjnych pastr lutowych.


Przełomy techniczne
a.Utrzymanie w niskich temperaturach: tusze Pd-Ag i Cu MOD utwardzają się w temperaturze 300°C pod działaniem azotu, zgodne z podłożami wrażliwymi na ciepło, takimi jak folie poliamid (PI) (używane w elastycznej elektronice) i tworzywa sztuczne o niskim Tg.
b. Wysoka przewodność: po utwardzeniu atramenty tworzą gęste folie metalowe o rezystywności < 5 μΩ·cm, porównywalnej z miedzią masową, spełniającą potrzeby anten o wysokiej częstotliwości.
c. Kompatybilność z odrzutowaniem: systemy odrzutowania piezoelektryczne odkładają atramenty MOD w liniach wąskich do 20 μm z odległością 5 μm, znacznie cienkiej niż pasta lutowa drukowana szminką.

Materiał przewodzący Szerokość linii (μm) Temperatura utwardzania (°C) Odporność (μΩ·cm) Kompatybilność podłoża
Tradycyjna pasta lutowa 50 ¢100 260 ‰ 280 10 ¢15 FR4, tworzywa sztuczne o wysokim Tg
Tyn MOD (Cu) 20 ¢50 300 < 5 PI, PET, tworzywa sztuczne o niskiej Tg


Główne zalety
a.Ultra-Fine Features: umożliwia instalację anten 5G mmWave z liniami 20μm, zmniejszając straty sygnału o 15% w porównaniu z tradycyjną miedzią etynową, która jest kluczowa dla pasm 28 GHz i 39 GHz.
b. Korzyści dla środowiska: formuły bez rozpuszczalników zmniejszają emisję LZO o 80%, zgodnie z przepisami EPA i celami zrównoważonego rozwoju przedsiębiorstw.
c. Elektronika elastyczna: atramenty MOD wiążą się z folii PI bez delaminacji, przetrwają 10k+ cykli gięcia (1 mm promienia) ˇ idealne do noszonych monitorów zdrowotnych i składanych telefonów.


Wyzwania, które trzeba pokonać
a.Złożoność utwardzania: tlen hamuje utwardzanie, wymagając pieców oczyszczanych azotem, które zwiększają koszty produkcji o 50 000 USD do 100 000 USD. Mniejsze producenci często pomijają gaz obojętny, akceptując niższą przewodność.
b.Żywotność: prekursory karboksylatów metalowych szybko ulegają degradacji.Żywotność wynosi zaledwie 6 miesięcy w warunkach chłodniczych (5°C), co zwiększa koszty odpadów i zapasów.
c. Koszty: tusze MOD kosztują 3×4 razy więcej niż tradycyjna pasta lutowa na gram, co ogranicza ich zastosowanie do zastosowań o wysokiej wartości (np. w przemyśle lotniczym, urządzeniach medycznych).


Przyszłe trendy
a. Inki wielokomponowe: Inki Ag-Cu-Ti MOD są opracowywane do hermetycznego uszczelniania w optoelektroniki (np. czujniki LiDAR), eliminując potrzebę kosztownego spawania laserowego.
b.Optymalizowane utwardzanie AI: piece z IoT dostosowują temperaturę i przepływ gazu w czasie rzeczywistym, wykorzystując uczenie maszynowe w celu zminimalizowania czasu utwardzania, maksymalnie zwiększając gęstość filmu, zmniejszając zużycie energii o 30%.
c. Drukowanie bez stencil: bezpośrednie odlewanie atramentów MOD (bez stencil) skróci czas konfiguracji o 80% w przypadku produkcji o niskiej objętości i dużej mieszance (np. niestandardowych urządzeń medycznych).


4Materiały dielektryczne o niskiej stratze: umożliwiające komunikację 6G i terahercową
Nawet najlepsze pasty lutowe i szablony nie mogą przezwyciężyć słabych właściwości dielektrycznych.gdzie integralność sygnału jest mierzona w ułamkach decybeli.


Przełomy techniczne
a.Ultra niskie współczynniki rozpraszania (Df): połączony ze sobą polimer polistyrenowy (XCPS) i ceramika MgNb2O6 osiągają Df < 0,001 przy 0,3THz ̇10 razy lepsze niż tradycyjny FR-4 (Df ~ 0,02 przy 1 GHz).
b. Stabilność termiczna: Materiały takie jak seria Preper MTM firmy PolyOne® utrzymują Dk (stałą dielektryczną) w zakresie ± 1% w zakresie od -40°C do 100°C, co ma kluczowe znaczenie dla środowisk motoryzacyjnych i lotniczych.
c.Dk dostosowywalne: kompozyty ceramiczne (np. YAG dopingowane TiO2) oferują Dk 2,5 ‰ 23 z blisko zerowym τf (współczynnik częstotliwości temperatury: -10 ppm/°C), umożliwiając precyzyjne dopasowanie impedancji.

Materiał dielektryczny Df @ 0,3THz Dk Stabilność (-40°C do 100°C) Koszty (w stosunku do FR-4) Najlepiej dla
FR-4 (standardowa) 0.02 ‰ 0.04 ± 5% 1x Elektronika użytkowa o niskiej prędkości (≤1 GHz)
XCPS (polimer) < 0.001 ± 1% 5x Antenny 6G mmWave
MgNb2O6 (ceramiczny) < 0.0008 ± 0,5% 10x Satelityczne nadajniki (0,3?? 3THz)


Główne zalety
a. Integralność sygnału: zmniejsza stratę wstawiania o 30% w modułach 5G 28GHz w porównaniu z FR-4, zwiększając zasięg o 20% dla małych komórek i czujników IoT.
b. Zarządzanie cieplne: wysoka przewodność cieplna (1 ∆2 W/m·K) rozprasza ciepło z komponentów o dużej mocy, zmniejszając temperaturę punktów gorących w procesorach AI o 15 °C.
c. Elastyczność projektowania: Kompatybilny z procesami UHDI ◄ współpracuje z atramentami MOD i szablonami laserowymi w celu tworzenia zintegrowanych anten i połączeń.


Wyzwania, które trzeba pokonać
a. Koszty: Dielektryki na bazie ceramiki kosztują 2×3 razy więcej niż polimery, ograniczając ich zastosowanie do zastosowań o wysokiej wydajności (np. wojskowych, satelitarnych).
b.Złożoność przetwarzania: spiekanie w wysokiej temperaturze (≥ 1600 °C w przypadku ceramiki) zwiększa koszty energii i ogranicza skalowalność dużych płyt PCB.
c. Integracja: wiązanie dielektryków o niskiej stratze z warstwami metalowymi wymaga specjalistycznych klejów, dodawania etapów procesu i potencjalnych punktów awarii.


Przyszłe trendy
a.Polymery samoodwracające się: W trakcie rozwoju są dielektryki pamięci kształtu, które naprawiają pęknięcia podczas cyklu termicznego, wydłużając żywotność PCB o 2 razy w trudnych warunkach.
b. Projektowanie materiałów opartego na AI: narzędzia do uczenia się maszynowego (np. IBM RXN for Chemistry) przewidują optymalne mieszaniny ceramiki i polimeru, zmniejszając czas rozwoju z lat do miesięcy.
c. Standaryzacja: Grupy przemysłowe (IPC, IEEE) określają specyfikacje materiałów 6G, zapewniając zgodność między dostawcami i zmniejszając ryzyko projektowania.


Trendy w branży kształtujące zastosowanie pasty lutowej UHDI
Ponad poszczególnymi technologiami przyspieszają się szersze trendy w zakresie wdrażania UHDI w 2025 r. i później:
1Zrównoważony rozwój w centrum uwagi
a.Dominans bez ołowiu: 85% zastosowań UHDI wykorzystuje obecnie pasty lutowe zgodne z RoHS 3.0 (Sn-Ag-Cu, Sn-Cu-Ni), zgodnie z przepisami UE i USA.
b.Recyklinowość: tusze MOD i polimery o niskiej stratze są 90%+ podlegające recyklingowi, zgodnie z celami ESG przedsiębiorstw (np. zobowiązanie Apple do neutralności węglowej do 2030 r.).
c. Wydajność energetyczna: systemy laserowe z odzyskiwaniem 80% energii (poprzez hamowanie regeneracyjne) zmniejszają ślad węglowy o 30% w porównaniu z modelami z 2020 r.


2Automatyzacja i sztuczna inteligencja zmieniają definicję produkcji
a.Integracja robotów kolaboracyjnych (cobotów): roboty współpracujące ładują/wyładowują szablony i monitorują drukowanie, zmniejszając koszty pracy o 40% przy jednoczesnym zwiększeniu efektywności całkowitego sprzętu (OEE) z 60% do 85%.
b.Digital Twins: wirtualne repliki linii produkcyjnych symulują zachowanie pastu, skracając czas przejścia o 50% podczas przełączania między wariantami produktu.
c.Przedykcyjna konserwacja: czujniki w drukarkach i piecach przewidują awarie, zmniejszając nieplanowane przestoje o 60%, co jest krytyczne dla linii o dużej objętości (np. 10k+ płyt/dzień).


3Zaawansowane opakowania napędzają popyt
a.Fan-Out (FO) i Chiplets: opakowania FO, o których prognozowano, że osiągną wartość 43 mld USD do 2029 r., opierają się na pastach lutowych UHDI do łączenia chiplets (mniejszych, wyspecjalizowanych IC) w potężne systemy.
b.3D-IC: Zestawione matrice z przewodami krzemowymi (TSV) wykorzystują atramenty MOD do drobnych połączeń, zmniejszając współczynnik kształtu o 70% w porównaniu z projektami 2D.
c. Integracja heterogeniczna: połączenie logiki, pamięci i czujników w jednym pakiecie wymaga materiałów UHDI do zarządzania przesłuchami cieplnymi i elektrycznymi.


Analiza porównawcza: Innowacje UHDI na pierwszy rzut oka

Innowacyjność Minimalny rozmiar Główne zalety Główne wyzwania Przewidywanie tendencji do 2027 r.
Ultrafiła pasta lutowa 120,5 μm odbicia Wysoka jednolitość, próżnia < 5% Ryzyko utleniania, wysoki koszt sterowanie drukiem w czasie rzeczywistym z wykorzystaniem sztucznej inteligencji
Stensyle do ablacji laserowej Wymagania w zakresie: 30% lepsze przenoszenie pasty, długa żywotność Wysokie koszty wyposażenia Stensyle z kompozytu ceramicznego do stabilności termicznej
Farby MOD 2 ̊5 μm linii/przestrzeni Bez cząstek stałych, niski poziom LZO, elastyczny Złożoność utwardzania, krótki okres trwałości Wyroby z tworzyw sztucznych
Dielektryki o niskiej stratzie 10 μm 30% mniejsza strata sygnału 6G Wysokie koszty, trudności z przetwarzaniem Polimery samoodwracające się do zastosowań wytrzymałych


Często zadawane pytania dotyczące pasty lutowniczej UHDI i innowacji
P1: W jaki sposób ultrafijne proszki lutowe wpływają na niezawodność stawów?
Odpowiedź: Proszki kuliste typu 5 poprawiają nawilżanie (rozpraszanie się) na powierzchniach podkładek, zmniejszając próżnię i zwiększając odporność na zmęczenie.Oznacza to 2x dłuższą żywotność w cyklu termicznym (-40°C do 125°C) w porównaniu zPasty typu 4.


P2: Czy atramenty MOD mogą zastąpić tradycyjną pastę lutową w produkcji dużych ilości?
Odpowiedź: Jeszcze nie ✓ Tkwy MOD doskonale sprawdzają się w drobnych liniach i elastycznych podłogach, ale są zbyt kosztowne dla połączeń dużych powierzchni (np. podkładek BGA).Atrybuty do urządzeń elektrycznych, pasta lutowa do połączeń zasilania.


P3: Czy szkice do ablacji laserowej są warte inwestycji dla MŚP?
Odpowiedź: W przypadku MŚP produkujących < 10 tys. płyt UHDI/rok, outsourcing produkcji szablonów specjalistom laserowym jest bardziej opłacalny niż zakup sprzętu.30% wzrost wydajności szybko zrekompensował koszty maszyny w wysokości 500 tysięcy dolarów.


P4: Jaką rolę odgrywają dielektryki o niskiej stratzie w 6G?
Odpowiedź: 6G wymaga częstotliwości teraherców (0,3 ⋅ 3 THz) do ultraszybkiego przesyłania danych, ale tradycyjne materiały, takie jak FR-4, absorbują te sygnały.umożliwiające komunikację 100Gbps+ w sieciach satelitarnych i miejskich.


P5: Czy technologie UHDI zmniejszą koszty produkcji PCB w perspektywie długoterminowej?
O: Tak, podczas gdy koszty wstępne są wyższe, miniaturyzacja (mniej materiałów, mniejsze obudowy) i wyższe plony (mniej złomu) obniżają całkowite koszty o 25% w produkcji dużych objętości.OEM smartfona używający UHDI zaoszczędził 0 $0,75 za jednostkę na 100 mln urządzeń w 2024 r.


Wniosek
Innowacje w zakresie pasty lutowej UHDI: ultrafijne proszki, szkice do ablacji laserowej, atramenty MOD i dielektryki o niskich stratach - to nie tylko kroki, ale podstawa elektroniki nowej generacji.Te technologie umożliwiają.3mm pitch BGA, 20μm ślady i komunikacja w terahercach, które będą definiować 6G, AI i IoT.i niższe całkowite koszty są niepodważalne.


Dla producentów i inżynierów wiadomość jest jasna: przyjęcie UHDI nie jest opcjonalne.W miarę przyspieszenia testów 6G i rozwoju opakowań, innowacje UHDI przekształcą się z "przyjemnych do posiadania" w "niezbędne".


Przyszłość elektroniki jest mała, szybka i połączona, a pasta lutowa UHDI to umożliwia.

Wyślij do nas zapytanie

Polityka prywatności Chiny Dobra jakość Płytka PCB HDI Sprzedawca. 2024-2025 LT CIRCUIT CO.,LTD. . Wszelkie prawa zastrzeżone.